SEASONAL FORCASTING OF TROPICAL CYCLONES

Dr Mark Saunders

Principal Climate Physicist Benfield Greig Hazard Research Centre University College London, UK

Communications Seminar, Lloyds of London 20th September, 1999

Presentation Overview

- 1. Overview
 - Who We Are
 - Research Objectives
- 2. Relevance to the Insurance Industry
- 3. Project Status
 - Methodology & Intrinsic Predictability
 - Hindcast Skill & Comparison with Gray
 - 1999 Season Update
- 4. Academia/Insurance Industry Collaboration

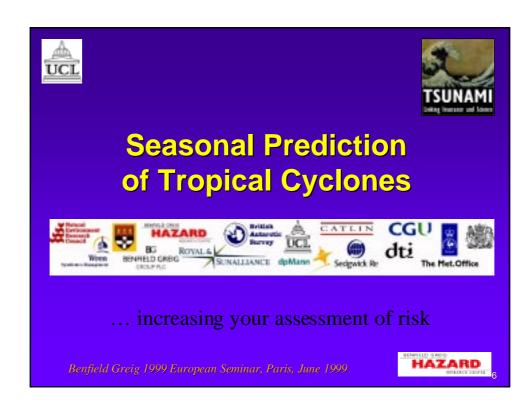
Who We Are

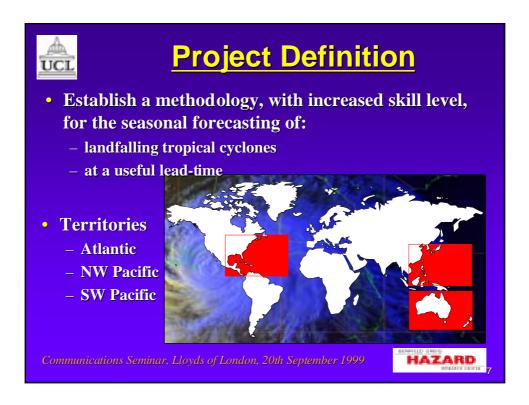
- Benfield Greig Hazard Research Centre
 - Launched in 1997.
 - First Multidisciplinary Hazard Research Centre in Europe.
 - Over 30 Staff with Expertise in All Major Perils.
 - Sponsored by Benfield Greig but Independent.

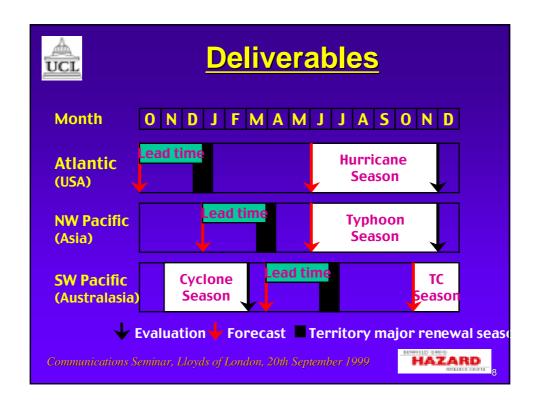
Communications Seminar, Lloyds of London, 20th September 1999

University Department

Department of Space and
Climate Physics
University College London
HOLMBURY ST MARY
Dorking
Surrey RH5 6NT
UK

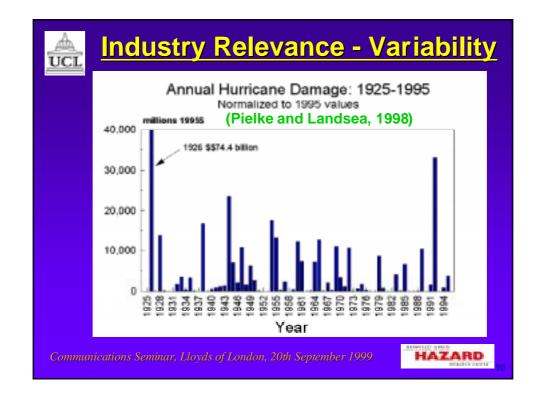





Research Objectives

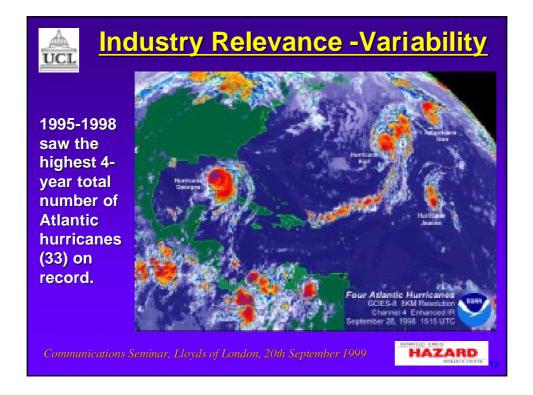
- To offer the (re)insurance industry <u>competitive advantage</u> by skillfully forecasting at long-range (out to 12 months) the extreme weather events causing greatest loss
 - Work funded by the Benfield Greig Group, the TSUNAMI Initiative, St Paul Re., and Risk Management Solutions.

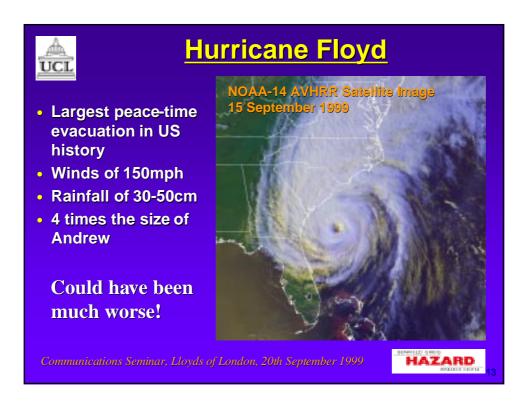
2. Industry Relevance


US Hurricanes

Hurricanes are the United States' costliest Natural Disaster. (Damage bill: £3.1 billion per year since 1925).

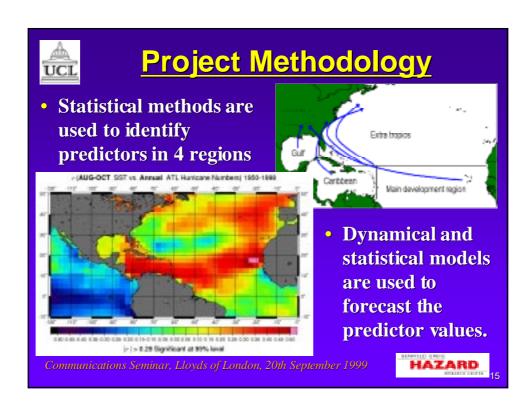
Hurricane Andrew Destruction: August 1992

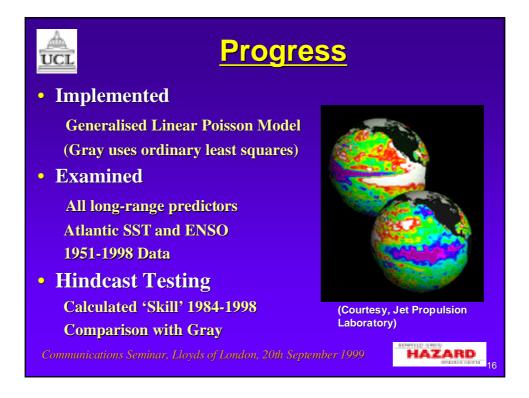


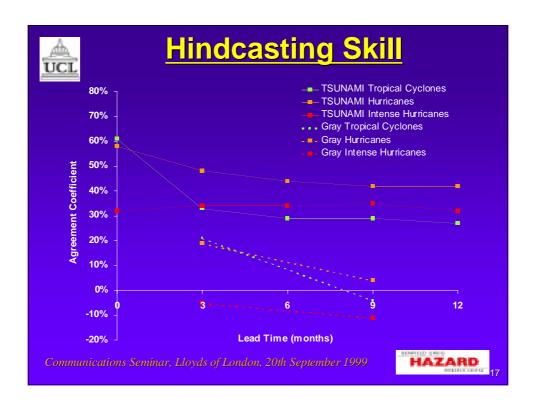


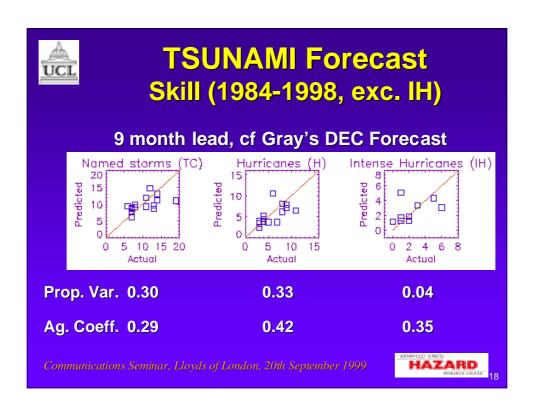
Industry Relevance - Variability

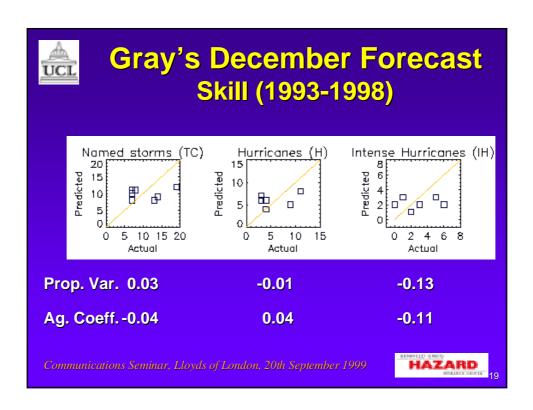
Atlantic Hurricane Losses 1998 (Munich Re, 1999)			
Tropical Cyclone	Economic Loss (\$million)	Insurance Loss (\$million)	
Hurricane Bonnie	1,500	360	
Tropical Storm Charlie	50	?	
Hurricane Earl	80	50	
Tropical Storm Frances	500	?	
Hurricane Georges	10,000	3,000	
Tropical Storm Hermine	20	?	
Hurricane Mitch	5,000	150	

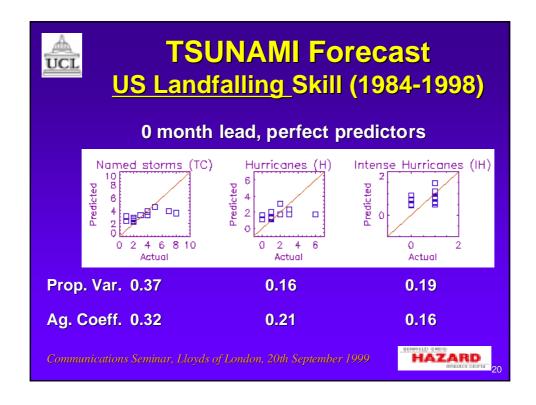

Intrinsic Predictability


As Measured by Proportion of Variance Explained Based on 1951-1998 Data


Theoretical Predictability (%)


			* '
Region	Tropical Cyclones	Hurricanes	Intense Hurricanes
Main Development Region	43 ± 13	50 ± 13	32 ± 18
Caribbean	13 ± 21	-11 ± 27	8 ± 26
Gulf of Mexico	-6 ± 24	-11 ± 29	10 ± 38



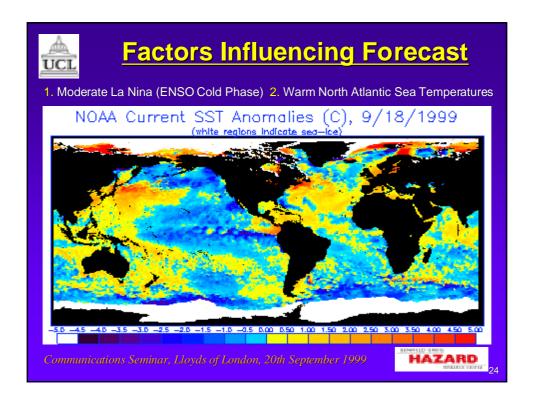


1999 Season Update

Individual Storm Summary

Winds in knots, pressure in millibars, category based on Saffir-Simpson scale.

No Name	Dates	Wind	Pres	Cat	Landfall
1 Tropical Storm ARLENE	11-18 JUN	50	1000	-	
2 Hurricane BRET	18-23 AUG	120	945	4	3
3 Hurricane CINDY	19-31 AUG	120	944	4	
4 Hurricane DENNIS	24 AUG-05 SEP	90		2	TS
5 Tropical Storm EMILY	24-28 AUG	55	1004	-	
6 Hurricane FLOYD	07-17 SEP	135	921	4	2
7 Hurricane GERT	11-20 SEP	130	930	4	Active
8 Tropical Storm HARVEY	19-20 SEP	40	1002		Active



Atlantic Total Numbers

		<u> </u>	<u>н</u>	<u>TC</u>
Average	1951-1998	2.4	5.8	9.8
Actual	1998	3	10	14
Gray June Forecast	1999	4	9	14
TSUNAMI June Foreca	st 1999	2 (±1)	7 (±3)	12 (±3)

- Numbers of events forming between Africa and the Caribbean will be below average.
- Numbers forming in the Caribbean, Gulf of Mexico and extra-tropical North Atlantic will be above average. HAZARD

US Landfalling Activity					
		<u>IH</u>	<u>H</u>	<u>TC</u>	
Average	1951-1998	0.6	1.5	3.1	
Actual	1998	0	3	7	
Dec. Forecast	1999	1 (±1)	2 (±1)	4 (±2)	
June Forecast	1999	1 (±1)	2 (±1)	4 (±2)	
Chance of at least 1 intense Hurricane strike: 19±7% for the U.S. East Coast (average is 20%) 39±5% for the U.S. Gulf Coast (average is 33%)					
• Forecast USA Hurricane Loss: \$8.3Bn (60% increase					
in average loss). Communications Seminar, Lloyds of London, 20th September 1999 HAZARD 23					

The Future

Priority for Improving Forecast Model

Better Prediction of Atlantic Sea Surface Temperature (and ENSO).

Forthcoming Forecasts

1st October 1999: TSUNAMI Long-Range Forecast for 2000

Atlantic Season.

1st January 2000: TSUNAMI Long-Range Forecast for 2000

NW Pacific Typhoon Season.

Communications Seminar, Lloyds of London, 20th September 1999

4. <u>Academia/Insurance</u> <u>Industry Collaboration</u>

- Enormous scope for strategic meteorological research relevant to (re)insurance.
- Many academics are unaware that they are working on problems beneficial to industry!

Benefits: Competition for funding less 'political' than in academia.

Knowledge that one is doing 'useful' research!

Disadvantages: Funding usually for 1-2 years (max).

Strict deadlines to be met!

